If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12a^2+24a=0
a = -12; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-12)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-12}=\frac{-48}{-24} =+2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-12}=\frac{0}{-24} =0 $
| (5x+13)=(7x-6) | | 3^x+2+3^x-2=82 | | 8(x+3)=14x-9 | | 1÷4x-3=6x | | v-3/v-1=2/v+2 | | 2x+8=9x-26 | | -17n=221 | | 7x-12=12+2 | | X+3(x-2)=2x+4 | | 2x-17=12-4x | | 48+x=9x | | 4x-13=9x+9 | | 8x+20+43=10x-11 | | 2x+3x-7=6x | | 7-x+89-2x=180 | | (1+2x)+35=180 | | (1+2x)+35=18 | | (1+2x+35=18 | | g+3g+-10=18 | | 3.9-2.1=11.2x+51.7 | | -19h-19=-16h+20 | | 7m÷8=14 | | x+x-34=180 | | -1-6n=5-7n | | F=3x2+24x+50 | | -19h−19=-16h+20 | | 2(x+5)(x-2)=0 | | 9q=-19+10q | | 19=x4 | | -5v+-26=24 | | q4− 3=1 | | -35=u7 |